Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 368, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605058

RESUMO

Globally, there is a concerning decline in many insect populations, and this trend likely extends to all arthropods, potentially impacting unique island biota. Native non-endemic and endemic species on islands are under threat due to habitat destruction, with the introduction of exotic, and potentially invasive, species, further contributing to this decline. While long-term studies of plants and vertebrate fauna are available, long-term arthropod datasets are limited, hindering comparisons with better-studied taxa. The Biodiversity of Arthropods of the Laurisilva of the Azores (BALA) project has allowed gathering comprehensive data since 1997 in the Azorean Islands (Portugal), using standardised sampling methods across islands. The dataset includes arthropod counts from epigean (pitfall traps) and canopy-dwelling (beating samples) communities, enriched with species information, biogeographic origins, and IUCN categories. Metadata associated with the sample protocol and events, like sample identifier, archive number, sampled tree species, and trap type are also recorded. The database is available in multiple formats, including Darwin Core, which facilitates the ecological analysis of pressing environmental concerns, such as arthropod population declines and biological invasions.


Assuntos
Artrópodes , Florestas , Animais , Biodiversidade , Ecossistema , Espécies Introduzidas , Açores
3.
J Environ Manage ; 337: 117713, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958277

RESUMO

Roughly 2 billion ha of land are degraded and in need of ecological restoration worldwide. Active restoration frequently involves revegetation, which leads to the dilemma of whether to conduct direct seeding or to plant nursery-grown seedlings. The choice of revegetation method can regulate plant survival and performance, with economic implications that ultimately feed back to our capacity to conduct restoration. We followed a peer-reviewed protocol to develop a systematic map that collates, describes and catalogues the available studies on how seeding compares to planting in achieving restoration targets. We compiled a database with the characteristics of all retrieved studies, which can be searched to identify studies of particular locations and habitats, objectives of restoration, plant material, technical aspects, and outcomes measured. The search was made in eight languages and retrieved 3355 publications, of which 178 were retained. The systematic map identifies research gaps, such as a lack of studies in the global South, in tropical rainforests, and covering a long time period, which represent opportunities to expand field-based research. Additionally, many studies overlooked reporting on important technical aspects such as seed provenance and nursery cultivation methods, and others such as watering or seedling protection were more frequently applied for planting than for seeding, which limits our capacity to learn from past research. Most studies measured outcomes related to the target plants but avoided measuring general restoration outcomes or economic aspects. This represents a relevant gap in research, as the choice of revegetation method is greatly based on economic aspects and the achievement of restoration goals goes beyond the establishment of plants. Finally, we identified a substantial volume of studies conducted in temperate regions and over short periods (0-5 y). This research cluster calls for a future in-depth synthesis, potentially through meta-analysis, to reveal the overall balance between seeding and planting and assess whether the response to this question is mediated by species traits, environmental characteristics, or technical aspects. Besides identifying research clusters and gaps, the systematic map database allows managers to find the most relevant scientific literature on the appropriateness of seeding vs. planting for particular conditions, such as certain species or habitats.


Assuntos
Ecossistema , Plantas , Plântula , Sementes
4.
Ecol Evol ; 13(2): e9828, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818530

RESUMO

Species' environmental requirements and large-scale spatial and evolutionary processes determine the structure and composition of local communities. However, ecological interactions also have major effects on community assembly at landscape and local scales. We evaluate whether two xerophytic shrub communities occurring in SW Portugal follow constrained ecological assembly dynamics throughout large geographical extents, or their composition is rather driven by species' individualistic responses to environmental and macroecological constraints. Inland dune xerophytic shrub communities were characterized in 95 plots. Then, we described the main gradients of vegetation composition and assessed the relevance of biotic interactions. We also characterized the habitat suitability of the dominant species, Stauracanthus genistoides, and Ulex australis, to map the potential distribution of the xerophytic shrub communities. Finally, we examined the relationships between the vegetation gradients and a broad set of explanatory variables to identify the relative importance of each factor driving changes in community composition. We found that xerophytic shrubs follow uniform successional patterns throughout the whole geographical area studied, but each community responds differently to the main environmental gradients in each region. Soil organic matter is the main determinant of community variations in the northern region, Setúbal Peninsula, whereas aridity is so in the South/South-Western region. In contrast, in the central region, Comporta, the variation between S. genistoides and U. australis communities is explained mainly by aridity and temperature seasonality, followed by the individualistic responses of the dominant species and soil organic matter. Overall, these results indicate that, the relative importance of the main factors causing community-level responses varies according to regional processes and the suitability of the environmental conditions for the dominant species in these communities. These responses are also determined by intrinsic community mechanisms that result in a high degree of similarity in the gradient-driven community stages in different regions.

5.
J Anim Ecol ; 92(1): 44-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443916

RESUMO

Traits are key for understanding the environmental responses and ecological roles of organisms. Trait approaches to functional ecology are well established for plants, whereas consistent frameworks for animal groups are less developed. Here we suggest a framework for the study of the functional ecology of animals from a trait-based response-effect approach, using dung beetles as model system. Dung beetles are a key group of decomposers that are important for many ecosystem processes. The lack of a trait-based framework tailored to this group has limited the use of traits in dung beetle functional ecology. We review which dung beetle traits respond to the environment and affect ecosystem processes, covering the wide range of spatial, temporal and biological scales at which they are involved. Dung beetles show trait-based responses to variation in temperature, water, soil properties, trophic resources, light, vegetation structure, competition, predation and parasitism. Dung beetles' influence on ecosystem processes includes trait-mediated effects on nutrient cycling, bioturbation, plant growth, seed dispersal, other dung-based organisms and parasite transmission, as well as some cases of pollination and predation. We identify 66 dung beetle traits that are either response or effect traits, or both, pertaining to six main categories: morphology, feeding, reproduction, physiology, activity and movement. Several traits pertain to more than one category, in particular dung relocation behaviour during nesting or feeding. We also identify 136 trait-response and 77 trait-effect relationships in dung beetles. No response to environmental stressors nor effect over ecological processes were related with traits of a single category. This highlights the interrelationship between the traits shaping body-plans, the multi-functionality of traits, and their role linking responses to the environment and effects on the ecosystem. Despite current developments in dung beetle functional ecology, many knowledge gaps remain, and there are biases towards certain traits, functions, taxonomic groups and regions. Our framework provides the foundations for the thorough development of trait-based dung beetle ecology. It also serves as an example framework for other taxa.


Assuntos
Besouros , Ecossistema , Animais , Besouros/fisiologia , Solo/química , Plantas , Sementes , Biodiversidade , Ecologia
6.
Biodivers Data J ; 10: e96442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761513

RESUMO

Background: Long-term studies are key to understand the drivers of biodiversity erosion, such as land-use change and habitat degradation, climate change, invasive species or pollution. The long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) started in 2012 and focuses on arthropod monitoring, using SLAM (Sea, Land and Air Malaise) traps, aiming to understand the impact of the drivers of biodiversity erosion on Azorean native forests (Azores, Portugal). This is the fourth contribution including SLAM project data and the second focused on the spider fauna (Arachnida, Araneae) of native forests on two islands (Pico and Terceira). In this contribution, we describe data collected between 2019 and 2021 and we analyse them together with a previously published database that covered the 2012-2019 period, in order to describe changes in species abundance patterns over the last ten years. New information: We present abundance data of Azorean spider species for the 2019-2021 period in two Azorean Islands (Terceira and Pico). We also present analyses of species distribution and abundance of the whole sampling period. In the period of 2019-2021, we collected a total of 5110 spider specimens, of which 2449 (48%) were adults. Most juveniles, with the exception of some exotic Erigoninae, were also included in the data presented in this paper, since the low diversity of spiders in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 45 species, belonging to 39 genera and 16 families. The ten most abundant species were composed mostly of endemic or native non-endemic species and only two exotic species (Tenuiphantestenuis (Blackwall, 1852) and Dysderacrocata C. L. Koch, 1838). They included 4308 individuals (84%) of all sampled specimens and were the dominant species in Azorean native forests. The family Linyphiidae was the richest and most abundant taxon, with 15 (33%) species and 2630 (51%) specimens. We report Cheiracanthiummildei L. Koch, 1864, a non-native species, from Pico Island for the first time. We found no new species records on Terceira Island. This publication contributes to increasing the baseline information for future long-term comparisons of the spiders on the studied sites and the knowledge of the arachnofauna of the native forests of Terceira and Pico, in terms of species abundance, distribution and diversity across seasons for a 10 years period.

7.
Biodivers Data J ; 10: e97952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761538

RESUMO

Background: A long-term study monitoring arthropods (Arthropoda) is being conducted since 2012 in the forests of Azorean Islands. Named "SLAM - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores", this project aims to understand the impact of biodiversity erosion drivers in the distribution, abundance and diversity of Azorean arthropods. The current dataset represents arthropods that have been recorded using a total of 42 passive SLAM traps (Sea, Land and Air Malaise) deployed in native, mixed and exotic forest fragments in seven Azorean Islands (Flores, Faial, Pico, Graciosa, Terceira, São Miguel and Santa Maria). This manuscript is the fifth data-paper contribution, based on data from this long-term monitoring project. New information: We targeted taxa for species identification belonging to Arachnida (excluding Acari), Chilopoda, Diplopoda, Hexapoda (excluding Collembola, Lepidoptera, Diptera and Hymenoptera (but including only Formicidae)). Specimens were sampled over seven Azorean Islands during the 2012-2021 period. Spiders (Araneae) data from Pico and Terceira Islands are not included since they have been already published elsewhere (Costa and Borges 2021, Lhoumeau et al. 2022). We collected a total of 176007 specimens, of which 168565 (95.7%) were identified to the species or subspecies level. For Araneae and some Hemiptera species, juveniles are also included in this paper, since the low diversity in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 316 named species and subspecies, belonging to 25 orders, 106 families and 260 genera. The ten most abundant species were mostly endemic or native non-endemic (one Opiliones, one Archaeognatha and seven Hemiptera) and only one exotic species, the Julida Ommatoiulusmoreleti (Lucas, 1860). These ten species represent 107330 individuals (60%) of all sampled specimens and can be considered as the dominant species in the Azorean native forests for the target studied taxa. The Hemiptera were the most abundant taxa, with 90127 (50.4%) specimens. The Coleoptera were the most diverse with 30 (28.6%) families.We registered 72 new records for many of the islands (two for Flores, eight for Faial, 24 for Graciosa, 23 for Pico, eight for Terceira, three for São Miguel and four for Santa Maria). These records represent 58 species. None of them is new to the Azores Archipelago. Most of the new records are introduced species, all still with low abundance on the studied islands. This publication contributes to increasing the baseline information for future long-term comparisons of the arthropods of the studied sites and the knowledge of the arthropod fauna of the native forests of the Azores, in terms of species abundance, distribution and diversity throughout seasons and years.

8.
Ecol Lett ; 24(11): 2521-2523, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510685

RESUMO

Biddick & Burns (2021) proposed a null/neutral model that reproduces the island rule as a product of random drift. We agree that it is unnecessary to assume adaptive processes driving island dwarfing or gigantism, but several flaws make their approach unrealistic and thus unsuitable as a stochastic model for evolutionary size changes.


Assuntos
Evolução Biológica , Deriva Genética
9.
Science ; 372(6541): 488-491, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926949

RESUMO

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.


Assuntos
Biodiversidade , Atividades Humanas , Ilhas , Humanos , Pólen
10.
Oecologia ; 195(3): 719-736, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33569745

RESUMO

Species diversity varies in space and time. Temporal changes in the structure and dynamics of communities can occur at different scales. We investigated the temporal changes of dung beetle assemblages in the Amazonian region along seasons, years, and successional stages. We evaluated if assemblage structure changes between temporal scales and whether such changes affect the functional structure of communities. To achieve these goals, we sampled dung beetles using linear transects of baited pitfall traps during the dry and rainy seasons at two natural reserves in the Amazon region, each representing different time scales: one covering successional variations (80, 30, 5, and 1 years of recovery from logging) and the other one encompassing three consecutive years at two successional stages (20 and 10 years from logging). We used Generalized Linear Models to analyze interannual and successional changes in diversity, described assemblage structure with a NMDS, and examined compositional variation by partitioning beta diversity into its nestedness and turnover components. Abundance and richness decrease from the rainy to the dry season and towards earlier successional stages but do not differ between years. Assemblage diversity changes differently in interannual and successional scales. During succession, dung beetle assemblages change drastically, following a nested structure due to the appearance of species and functional groups in later successional stages. In contrast, functional group composition does not show consistent changes between years, displaying a turnover structure. This pattern supports non-deterministic changes in dung beetle assemblage structure along forest succession.


Assuntos
Besouros , Animais , Biodiversidade , Fezes , Florestas , Estações do Ano
12.
Biol Lett ; 15(10): 20190481, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31594495

RESUMO

According to the island rule, small-bodied vertebrates will tend to evolve larger body size on islands, whereas the opposite happens to large-bodied species. This controversial pattern has been studied at the macroecological and biogeographical scales, but new developments in quantitative evolutionary genetics now allow studying the island rule from a mechanistic perspective. Here, we develop a simulation approach based on an individual-based model to model body size change on islands as a progressive adaptation to a moving optimum, determined by density-dependent population dynamics. We applied the model to evaluate body size differentiation in the pigmy extinct hominin Homo floresiensis, showing that dwarfing may have occurred in only about 360 generations (95% CI ranging from 150 to 675 generations). This result agrees with reports suggesting rapid dwarfing of large mammals on islands, as well as with the recent discovery that small-sized hominins lived in Flores as early as 700 kyr ago. Our simulations illustrate the power of analysing ecological and evolutionary patterns from an explicit quantitative genetics perspective.


Assuntos
Hominidae , Animais , Evolução Biológica , Tamanho Corporal , Fósseis , Indonésia , Ilhas , Mamíferos
14.
PDA J Pharm Sci Technol ; 72(1): 62-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29242394

RESUMO

Microbial quality control of non-sterile drug products has been a concern to regulatory agencies and the pharmaceutical industry since the 1960s. Despite being an old challenge to companies, microbial contamination still affects a high number of manufacturers of non-sterile products. Consequences go well beyond the obvious direct costs related to batch rejections or product recalls, as human lives and a company's reputation are significantly impacted if such events occur. To better manage risk and establish effective mitigation strategies, it is necessary to understand the microbial hazards involved in non-sterile drug products manufacturing, be able to evaluate their potential impact on final product quality, and apply mitigation actions. Herein we discuss the most likely root causes involved in microbial contaminations referenced in warning letters issued by US health authorities and non-compliance reports issued by European health authorities over a period of several years. The quality risk management tools proposed were applied to the data gathered from those databases, and a generic risk ranking was provided based on a panel of non-sterile drug product manufacturers that was assembled and given the opportunity to perform the risk assessments. That panel identified gaps and defined potential mitigation actions, based on their own experience of potential risks expected for their processes. Major findings clearly indicate that the manufacturers affected by the warning letters should focus their attention on process improvements and microbial control strategies, especially those related to microbial analysis and raw material quality control. Additionally, the WLs considered frequently referred to failures in quality-related issues, which indicates that the quality commitment should be reinforced at most companies to avoid microbiological contaminations.LAY ABSTRACT: Microbial contamination of drug products affects the quality of non-sterile drug products produced by numerous manufacturers, representing a major risk to patients. It is necessary to understand the microbial hazards involved in the manufacturing process and evaluate their impact on final product quality so that effective prevention strategies can be implemented. A risk-based classification of most likely root causes for microbial contamination found in the warning letters issued by the US Food and Drug Administration and the European Medicines Agency is proposed. To validate the likely root causes extracted from the warning letters, a subject matter expert panel made of several manufacturers was formed and consulted. A quality risk management approach to assess microbiological contamination of non-sterile drug products is proposed for the identification of microbial hazards involved in the manufacturing process. To enable ranking of microbial contamination risks, quality risk management metrics related to criticality and overall risk were applied. The results showed that manufacturers of non-sterile drug products should improve their microbial control strategy, with special attention to quality controls of raw materials, primary containers, and closures. Besides that, they should invest in a more robust quality system and culture. As a start, manufacturers may consider investigating their specific microbiological risks, adressing their sites' own microbial ecology, type of manufacturing processes, and dosage form characteristics, as these may lead to increased contamination risks. Authorities should allow and enforce innovative, more comprehensive, and more effective approaches to in-process contamination monitoring and controls.


Assuntos
Contaminação de Medicamentos , Europa (Continente) , Órgãos Governamentais , Humanos , Controle de Qualidade , Gestão de Riscos , Esterilização , Estados Unidos , United States Food and Drug Administration
15.
Sci Rep ; 7(1): 3899, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634340

RESUMO

Species abundance distributions (SAD) are central to the description of diversity and have played a major role in the development of theories of biodiversity and biogeography. However, most work on species abundance distributions has focused on one single spatial scale. Here we used data on arthropods to test predictions obtained with computer simulations on whether dispersal ability influences the rate of change of SADs as a function of sample size. To characterize the change of the shape of the SADs we use the moments of the distributions: the skewness and the raw moments. In agreement with computer simulations, low dispersal ability species generate a hump for intermediate abundance classes earlier than the distributions of high dispersal ability species. Importantly, when plotted as function of sample size, the raw moments of the SADs of arthropods have a power law pattern similar to that observed for the SAD of tropical tree species, thus we conjecture that this might be a general pattern in ecology. The existence of this pattern allows us to extrapolate the moments and thus reconstruct the SAD for larger sample sizes using a procedure borrowed from the field of image analysis based on scaled discrete Tchebichef moments and polynomials.


Assuntos
Artrópodes , Biodiversidade , Ecossistema , Densidade Demográfica , Algoritmos , Animais , Modelos Teóricos
16.
Biodivers Data J ; (4): e10948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28174509

RESUMO

BACKGROUND: In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA - Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments in seven of the nine Azorean islands (all excluding Graciosa and Corvo islands, which have no native forest left). NEW INFORMATION: Of the total 286 species identified, 81% were captured between 1999 and 2000, a period during which only 39% of all the samples were collected. On average, arthropod richness for each island increased by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and more importantly to other less surveyed taxonomic groups (e.g. Diptera and Hymenoptera). These steps are fundamental for getting a more accurate assessment of biodiversity in the archipelago.

17.
PLoS One ; 9(7): e101786, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003186

RESUMO

Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological conditions during the establishment phase.


Assuntos
Biodiversidade , Briófitas , Meio Ambiente , Hepatófitas , Densidade Demográfica , Dinâmica Populacional , Portugal , Espanha , Análise Espaço-Temporal
19.
Mol Ecol Resour ; 11(1): 46-59, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21429100

RESUMO

Studies on the biogeography of host-parasitoid interactions are scarce, mainly because of technical difficulties associated with rearing and species identification. DNA barcoding is increasingly recognized as a valuable tool for taxon identification, allowing to link different life history stages of a species. We evaluate the usefulness of a protocol based on cytochrome oxidase I (COI) sequencing for the study of geographical variation of host-parasitoid interactions. Larvae of Acroclita subsequana (Lepidoptera: Tortricidae) were collected in Macaronesia and dissected to search for parasitoid larvae. Both hosts and parasitoids were sequenced and assigned to molecular operational taxonomic units (MOTUs) based on pairwise genetic distances, tree-based and similarity-based methods. Hosts were grouped into six MOTUs, usually with an allopatric distribution, while parasitoids clustered into 12 MOTUs, each of which was mostly found attacking a single host MOTU. Available COI sequence databases failed to provide identification to species level for these MOTUs. Three challenges related to the applicability of DNA barcoding in this type of studies are identified and discussed: (i) more suitable primers need to be developed for both parasitoids and hosts; (ii) the most commonly used approaches for inferring MOTUs have different limitations (e.g. arbitrary nature of defining a threshold to separate MOTUs) and need to be improved or replaced by other techniques; and (iii) for the identification of MOTUs, it is imperative to increase the range of sequenced taxa in the currently available reference databases. Finally, in spite of these difficulties, we discuss how DNA barcoding will help ecological and biogeographical studies of host-parasitoid interactions.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Euphorbia/parasitologia , Interações Hospedeiro-Parasita , Mariposas/classificação , Filogenia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Geografia , Proteínas de Insetos/genética , Dados de Sequência Molecular , Mariposas/enzimologia , Mariposas/genética , Mariposas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...